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Viscous Effects on a Vortex Wake in Ground Effect

by

Z. Zheng* and R. L. Ash t

Abstract

Wake vortex trajectories and strengths are altered radically by interactions with the ground

plane. Prediction of vortex strength and location is especially important in the vicinity of

airports. Simple potential flow methods have been found to yield reasonable estimates of vortex

descent rates in an otherwise quiescent ambient background, but those techniques cannot be

adjusted for more realistic ambient conditions and they fail to provide satisfactory estimates of

ground-coupled behavior. The authors have been involved in a systematic study concerned with

including viscous effects in a wake-vortex system which is near the ground plane. The study has

employed numerical solutions to the Navier-Stokes equations, as well as perturbation techniques

to study ground coupling with a descending vortex pair.

Results of a two-dimensional, unsteady numerical-theoretical study are presented in this

paper. A time-based perturbation procedure has been developed which permits the use of

analytical solutions to an inner and outer flow domain for the initial flow field. Predictions have

been compared with previously reported laminar experimental results. In addition, the influence

of stratification and turbulence on vortex behavior near the ground plane has been studied.
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Introduction

It is known that aircraft trailing vortex wakes can cause serious loss of control when following

aircraft encounter them. The hazard is more severe near the ground because of the limited time

and space available to maneuver the aircraft. Therefore, prediction of wake vortex trajectories

and strengths is especially important for effective airport flight control. The work reported here

has been focused on the viscous interaction between vortex wakes and the ground plane.

Potential theory representation of a pair of counter-rotating vortex filaments above an

infinite plane yields reasonable estimates of wake vortex descent rates in an otherwise quiescent

atmosphere, when the wake is sufficiently far from the ground (Saffman 1979). By assuming the

vortices could be treated as small core sized vorticity spots above a very thin ground boundary-

layer, Liu and Ting (1987) determined that away from the small cores and the thin boundary-layer

region, the flowfield obeyed the Euler equations. From that perspective, it is very inefficient and

expensive to study the trailing vortex problem using Navier-Stokes solvers for the entire flow

field. However, the methods of Liu and Ting (1987) are only valid when the vortical spot is

sufficiently far away from the ground relative to the core size, so that vortex-core interactions

with the ground-plane boundary layer can be neglected. Hence, Euler equations can be used to

model large portions of the computational domain, but that region must be adjusted continuously

near the ground plane.

It should be stated that without ground effect, even in more realistic atmospheric conditions,

an approximate model developed by Greene (1986) demonstrated surprisingly good agreement

with experimental data. That method was based upon empirical engineering approximations.

But from the authors' experience, the extension required to include ground effects was not

compatible with Greene's model.
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Experimentsto establishthe featuresof the flowfield induced by a single vortex near the

groundwere cardedout by Harvey andPerry (1971) in a low-speedwind tunnel. The primary

objective of thoseexperimentswas to explain the causeof the vortex rebound phenomenon

which is consideredto be a significant featureof the groundeffect and which can influence

terminal flight conditions. They inferred that reboundwascausedby separationof the ground

boundary-layerflow underneaththevortex. Theyarguedthatboundary-layerseparationproduces

a secondaryvortex whosedevelopmentmakesthe primary vortex rise. Later Barker andCrow

(1977)observedreboundfor a vortex pair, generatedin water,approachingeither a free upper

surfaceor a rigid horizontal plane immersedin thewater. They assertedthat the phenomenon

could be attributedto the effectof finite vortex coresize. Recently,experimentswere designed

by Liu and Smsky (1990) to minimize the sidewall effects that can mask the groundeffects.

Fromtheir dyevisualizationresultsin water,theyidentifiedtheemergenceof secondary,counter-

rotatingvorticesoutboardfrom thevortexwakeneargroundlevel. They determinedthat assoon

asthe secondaryvortex beganto form, rebound of the main vortex was initiated. Specifically,

the primary and secondary vortices form a vortex pair that moves upward. Those results have

confirmed essentially the scenario of secondary vortex generation suggested by Harvey and

Perry (1971).

Many theoretical studies of a vortex pair in ground effect have been reported during the last

two decades. Research reported by Bilanin, Teske and Hirsh (1978), Saffman (1979) and Peace

and Riley (1983) disagreed with the finite core size hypothesis of Barker and Crow (1977).

Saffman (1979) showed, within the framework of inviscid theory, that it was not possible to

explain the rebound phenomenon by finite core size and that the wallward velocity component

cannot change sign. Navier-Stokes computational results for a trailing vortex pair near the ground

were performed by Bilanin, Teske and Hirsh (1978) for both laminar and turbulent conditions.

They demonstrated that the rebound did not occur unless the viscous, no-slip boundary condition
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wasapplied. Oneof the importantconclusionsdrawnby themwasthattheproximity of aground

planereducesthe vortex hazardby scrubbing.That is, thevortex pair separatesor spreadsand

interactsviscouslywith thegroundtherebyreducingits strengthmorerapidly. A numericalstudy

of theeffectsof stratificationand wind shearon the evolutionof aircraft wakevorticesnearthe

groundwas also included in the report by Delisi, Robins and Fraser(1987), who found that

both effectsreducethe extentof vortex rebound. As they stated,turbulencewas not included

formally in their computationalmodel. But somead hoc small scale damping was added to the

equations included in the numerical model. They thought this simple "turbulence model" was

adequate to predict vortex migration. In addition, a mixed no-slip/slip boundary conditiort was

invoked on the ground plane which needed an empirical adjustment for different flow cases.

In the work which follows, a two-dimensional, unsteady numerical-theoretical study will be

reported. A time-dependent double series, asymptotic expansion in terms of Reynolds number

and time has been used for the initial flow field. The computational domain and grid spacing

have been chosen carefully to avoid using approximate boundary conditions and to get proper

resolution. Subsequently, the influences of stratification and turbulence on vortex behavior near

the ground plane have been shown.

Computational Approach

An unsteady vorticity, slream-function formulation has been used in the numerical calcula-

tions. Invoking symmetry of the vortex pair permits the computations to be restricted to the first

quadrant (0 < z < oo, 0 < y < oo). The system of equations were made dimensionless using

the initial vortex half-span, so, as the characteristic length and the initial circulation, 1-'0, along

with the fluid density, Po, to formulate the other dimensionless variables. The characteristic flow

Reynolds number is Re = l"0/v0, where u0 is the kinematic viscosity. Characteristic velocity,
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timeandpress_ _ _.venby ro/_o, _/ro andpoFo/So,res_c_vety.Since_ere isonlyo_e

component of vordcity, (, t.he governing vordcity and su'eam-funcdon (_b) equations axe:

(i)

and

respectively. Here

_=u_+u; (3)

and

c% Ou c?_ O_

_"= Oz Oy' with u = _-, and v = -0"_" (_')

The coordinate system is shown in Figure I.

y

.////////////////////////7.

Figure I. Coordinate system employed in this study
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Since the flow is for the most part inviscid, with an unsteady, viscous ground-plane boundary

layer and a small viscous vortex core region, problems were encountered in starting the numerical

calculations. The initial velocity field problem has been addressed previously by Peace and

Riley (1983), but they used a single series expansion in time, scaled by Reynolds number

(t/Re), to start their asymptotic solution. Limitations of the single series expansion for unsteady

boundary-layer flows have been discussed by Nam (1990). Considerable effort was devoted to

developing an appropriate initial velocity field which accommodated the ground effect region

in the numerical simulation without producing non-physical, numerical start-up transients. A

forthcoming contractor report (Ash and Zheng 1991) contains a more detailed derivation of

the asymptotic expansion formulations, but the essential features of the approach are developed

below. In addition, the computational domain transformation procedure and boundary condition

specifications are discussed.

Flow Field Initialization

Since a goal of this study was to extend the Reynolds number range over which vortex-

ground plane interactions could be modeled, viscous effects were anticipated in both the vortex

core and boundary layer regions long before any interactions between the vortex core(s) and

boundary layer occurred. Furthermore, a fine numerical grid was required for both the vortex

region, including its path of descent, and the ground-plane boundary layer. Both requirements

demanded an initial velocity field which was free of anomalous velocity gradients.

The Oseen (1911) vortex is an exact solution to the Navier-Stokes equations for the diffusion

of a vortex filament into a viscous region of infinite extent. For any time greater than zero, the

Oseen vortex includes viscosity, while at t = 0, it is an inviscid point vortex. Hence, placing a

pair of those vortices at 4-x0, y0 at t = 0, is equivalent to placing a pair of potential vortices at

those locations, but then allowing viscous effects to occur immediately after placement. Oseen
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vortex solutionsdo not include either non-linearcoupling of the vortex pair or the viscous

influence of a ground plane. Adding a mirror imagepair of Oseenvortices (at +zo, -go)

canbe usedto initiate a groundplaneinteraction. Sincethosevorticesproceedimmediatelyto

viscous flows, they appearto be a more realistic starting flow than that of a pair of potential

vortices in any practical numerical grid. Hence, analytic perturbationmethodscan be used

to predict the flow during the initial time interval when local velocity gradientscreatesevere

problemsfor numerical techniques.

In the ground plane boundary-layer region, the initial stream-function ¢(x, y, t) is assumed

to take the form:

_(x, y, t) - 2_[_1(x,,7,t) + _2(_,,7, t) + ...]

where e = V/-i-/Re and rI = y/2e, with

oO

_i(x'rl't) = Z tv¢; (x'rl't)
p=O

This stream-function must satisfy the no-slip boundary conditions.

In the outer flow, it is assumed that the stream-function can be represented initially by

(5)

(6)

kV(x,y,t) = qlo(x,y,t) + ,gt1(x,y,t) + ... (7)

This stream-function must satisfy the initial potential vortex requirements of both a symmetry

plane and a ground plane. Application of the two-dimensional, incompressible Navier-Stokes

equations to the two stream-function series and matching the expansions using van Dyke (1976)

type matching procedures yields

= 2,(¢1 + ,_2) + 0[, 3] (8)

where

¢1 = Uofo, + t \--g-i- + Uo f,2 + o[?] (9)



(10)

1 __2 1
fol - rt err(T/) + --T_-e -

(11)

2 2

f:l - 37r1/2 3_" /

(12)

f12 -- 6_rI_

(
(2 2) 2 erf(r/)+ ( 1 + 4 )riCe-ha (13)4- -- r/erfc(r/) 37ri/2 _-_ 9-_

1 ¢_ 1_/2_i(_)
9ol - rl+ _rrl/2r12erfc(r/)- _.rle- 4

(14)

rl/2 I L '1 2911 - 4 (_734- _14)erfc(rl) 4- -_ (_7/2 4- r/4)e-n dr/ (15)

rl/2

2

_ ,.i/2r/eft(,7)- g_d(r/)

],?) eft(,7)+ 3_.---_7_(1+ r/2):': ]

rt_ I _2n _2,72 _- _d(,7)- _r/_

2 l_e_,12}d _+5-2
(16)

1 '7 1 _2

3__rl/2(r/2+_rl4)erfcQ1)+-_f ° (r/2+_r/4) e ndr/g13 = 8

(17)
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It is notedthat Uo(z, t) and U1 (x, t) are the outer flow representations of the vortices along

the ground plane (Y = 0). These solutions are restricted to small times and are given by

U0(z, t) = 4 y0x (18)

and

2/0Ul(x, t) - ra/2 Oz x=e x - _ (19)

which are the same forms used by Peace and Riley (1983).

In effect, four Oseen vortex solutions, with Cartesian velocity components given by

Uc(x,y,t) = (y - yo)[_(x,y,t;-l,yo) - _(x,y,t; 1,y0)]

+ (y + yo)[_(x,y,t; 1, -y0) - 6P(x,y,t;-1, -y0)] (20)

and

vc(x, y, t) = (x - 1)[¢(x, y, t; 1,y0) - v(_,y,t; 1,-y0)]

+ (_ + 1)[¢(_, y, t;-1, -y0) - ¢(x,y,t;-1, y0)] (21)

where

1 1 -- e -Re[(z-a)2+(y-B)2]/4t

'_(x,y,t;a,_3) = 2r (x_ a)2 + (Y-/3)2 (22)

have been employed in the outer flow, in the vicinity of x = 1, y = y0. Again, these functions

are restricted to small times, where they do not alter the asymptotic matching conditions.

To summarize, the asymptotically generated velocity field, which constitutes the initial

velocity distribution in the numerical scheme, is a combination of solutions (7), (8), (20) and (21).

Small values of time, compared to the Reynolds number, have been employed. The asymptotic

solution time level selected to generate the initial velocity field depended on the circulation

Reynolds number, but it was the maximum time allowable by the finite term approximations
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to the infinite seriesexpansions.The asymptoticsolutionswerethus usedto producean initial

velocity field whoselocal gradientscould be handled by the numerical grid, but whose series

representations did not represent a significant amount of computational overhead.

Domain Transformation and Boundary Conditions

A moving grid was considered for this study but was discarded subsequently, due to the

complexity of the vortex trajectory in ground effect and to uncertainty in the viscous zones

requiring fine grid resolution. It was deemed more reasonable to pack grid points adjacent to

the symmetry- and ground-planes and allow the vortex system to move with respect to the grid.

This was possible because the nominal regions where viscous effects occurred were known to a

first order approximation. It is noted further that the elliptic character of the incompressible flow

field mandates enforcing the boundary conditions at the infinite limits of x and y or alternatively

developing rigorous boundary condition approximations within a finite domain.

Bilanin et al (1977) and Ting (1983) studied the far field boundary condition problem. They

used the far field expansions of Poisson integrals which could be employed in a finite subdomain

of an unbounded fluid. The exponential decay laws for vorticity distributions were required for

the convergence of the far field expansions (Tmg 1983). The expansions were developed further

by "ring (1983) using integral invariants. Unfortunately, neither the decay laws nor the integral

invariants exist when a no-slip boundary is present because the vorticity distribution in the viscous

ground-plane boundary layer cannot be estimated a priori. Here a coordinate mapping has been

used, employing a simple exponential transformation which yields densely packed grid points

near the ground plane and stretches the grid as the infinite limits are approached. The mapping

(23)



transforms0 <_ x < c_, 0 <_ y < ec into the finite domain 0 <_ X < a, 0 <_ Y < c.

corresponding spacing intervals are

11

The

A X _ abe-bZ Ax

AY _ cde-dyAy (24)

Hence the boundary-layer and vortex core resolution can be controlled by adjusting the arbitrary

constants a, b, c and d.

Since the ground plane spacing is compressed automatically via the coordinate mapping,

resolution requirements are more severe in the far field. In addition, vortex core resolution in

the vertical direction is most sensitive at start-up (y = y0), while horizontal resolution is least

accurate at the end of the numerical simulation (when the vortex core is at the greatest horizontal

distance from the symmetry plane) -- say xt. Since the vortex dilates as time increases, selecting

an appropriate grid spacing initially produces a conservative spacing level at later times.

As an example, ff the initial vortex core radius is rc = 0.2, then we would require that

Aym_x = 0.02 (= re/10) at Y0, and that Axmax = 0.1 (= rc/2) at xt. The Azmax spacing will

be more compact relative to the vortex core due to dilation beginning from t = 0. However,

the spacing interval is given by:

AX < 0.1 abe -br'

and

AY _< 0.01 cde-ay° (25)

NAY = c,

lOebZ_
M>

- b

Since the number of grid increments in the X-direction must satisfy MAX = a, while
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50ed_o
N > (26)

- d

The minimum number of grid points for acceptable resolution occurs when b = 1/zt and

d = 1/yo and is given by

M > lOxze

and

N > 50y,,e (27)

The boundary conditions in the transformed domain are:

_(0,Y,t) =0, _(0,Y,t) =0, (28)

_(a, y,t)=0, _(,_,y,t)=o, (29)

_'(X, O, t) = -c2d 2 O-_(X,02/p " O, t), (30)

_,(x, o, t) = o, (31)

_'(X, c, t) = O, and _p(X, c, t) = O. (32)

The discretized expression for the ground-plane vorticity, Eqn.(30), was developed by Roache

(1972), and is given by

((X, O, t) _ -2(anc2d2/Ay 2 (33)
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where the subscript, n, indicates the grid locations adjacent to the ground plane.

In this study, the vertical grid spacing was fine enough to permit implementation of the

no-slip boundary condition on the ground plane without exaggerating numerically the viscous

interaction encountered previously by Delisi, Robins and Fraser (1987).

While the velocity boundary conditions appear to be over-specified (Anderson 1986), they

are compatible with the velocity components in the transformed domain, given by

o_. d. (c- Y)
u=O---_

0,_. b. (a - X) (34)
v = -0--X

which can be easily verified. These boundary conditions also satisfy the integral conditions

developed by Anderson (1986).

An alternating-direction implicit (ADI) scheme was used to solve the vorticity transport

• equation (1), with the upwind flux-splitting method applied to the convection terms and central-

differencing for diffusion terms. An efficient Poisson solver (Swarztrauber and Sweet, 1979)

was usect ;o solve Eqn.(2). Viscous flow in a driven cavity was chosen as a test problem for

that computational scheme to explore the capability of capturing the secondary-vortex evolution

phenomena at high Reynolds number. The systematic numerical studies of this problem are

well-documented in Bozeman and Dalton (1973) and Rubin and Harris (1975).

Stratification Effects

The present analysis has employed the Boussinesq approximations to model buoyancy effects.

Specifically, the local density has been assumed related linearly to temperature via

p --- po[1 -a(T- To)] (35)
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where a is the volumetric coefficient of thermal expansion and o<<1. Hence, the density

departure from the reference value can be represented in dimensionless form as

= (p- po)/po = -a(T- To) (36)

The complete Boussinesq model neglects all density variation effects except the body force

term in the momentum equation so that the conservation of momentum equations result in the

modified vorticity transport equation:

0_ _)o-7+ @. (=

where

Fvz Ox + V2( (37)

F_ = F2/gs] (38)

by

For the case of a linearly stratified ambient fluid, the dimensionless temperature, 0, defined

0 - (T - To)/To (39)

is assumed given in the quiescent, ambient state as

0 = fly (40)

Hence, the ambient density departure is given by

p = -a_3yTo (41)

or

= -_/aTo (42)
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Similarly, the density and temperature fluctuations are related such that

!

P =t_-_

O' = 0 - # (43)

and

!
p = -aToO' (44)

Neglecting viscous dissipation, the appropriate conservation of energy equation, invoking

the Boussinesq approximation is:

00

R, Pr V20' (45)

which can be written in terms of the density fluctuations (through Eqn. 44) for the stably stratified

case as

Op' u Op' v Opt d_ 1 ,.-,2 !
0---(+ --_z + --_-ffy+ v-_y - neprV p (46)

Restricting attention to cases where RePr >> 1, we can neglect the diffusion terms and the

conservation of energy equation becomes:

Op' _) p, = d# (47)0-7-+

Alternatively, buoyancy effects could have been introduced through the compressible conser-

vation of mass equation. By expanding the conservation of mass equation in terms of the volu-

metric coefficient of thermal expansion, a, the incompressible continuity equation and Eqn. (46)

evolve from the zeroth and first order groupings in the a expansion. Hence, the numerical
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simulationis modifiedvia Eqns.(37), (41) and(47) whenstratificationeffectsare included. The

computationalschemewaseasilymodified to includestratificationsincethe samegrid wasused

andthedensityfluctuationequationcould be implemented using the same procedures employed

for the vorticity transport equation.

It is noted that the dimensionless parameter, F,,, which appears in the vorticity transport

equation (37), is related to the Brunt-Vaistil/i frequency. That is, if the dimensionless density

gradient is defined by

n2 _ d# (48)
dy

then the Brunt-V_s_/i frequency, N, is given by

N2 = g d_ Fo2n2
so dy 4 2

(49)

Stratification effects represent additional difficulties because of the characteristic time in-

troduced via Brunt-Vaisal_i or density induced oscillations. If agN/F0(= _v) >> 1, buoyancy

effects are significant and the characteristic time (%2/F0) is large compared with the time in-

terval over which density induced oscillations occur. The complication arising from these two

characteristic times has been examined in detail by Hirsh (1985). For more realistic physical

problems, F,_ is typically quite large and the stratified density gradient (through n) is not large

enough to result in large values of a2oN/Fo. Consequently, a limiting test case is when the two

time scales are equivalent (%2N/F0 ,_ 1).

Simulations were run with ._N/Fo = 1, but the density effects were so large that major

vortices of opposite sign were generated very rapidly and the flow quickly became unstable

numerically.
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Ambient Turbulence

Inclusion of turbulent effects is an important element of this study. However, due to the

approximate nature of turbulence models, initial work has restricted attention to limited types of

turbulent processes and simple models. It is assumed here that atmospheric turbulence is being

generated by axial (z-direction) wind shear. Since stratification effects are under investigation,

it should be noted that buoyancy induced turbulence effects are usually small in the immediate

vicinity of the ground, when compared to wind-driven fluctuations and have been neglected.

However, some very important types of buoyancy-driven turbulence phenomena are known to

occur with potentially serious consequences (e.g.

complicated to be modelled reliably at this time.

microbursts), but those processes are too

These catastrophic-type, bouyancy-driven

turbulence effects supercede wake-vortex prediction requirements and should be investigated

separately. In addition, turbulence is generated by the wake vortex structures themselves.

Those turbulence generation processes are also outside of the turbulence modelling capabilities

employed in the present study.

The dimensionless vorticity transport equation can be written in index notation as

Dfli _ Oui 1

Hi-a--- = -_e V_fliDt azj
(50)

By assuming that the vorticity components can be decomposed into (slowly varying) time mean

and (rapidly varying) unsteady parts, i.e.

f_, = hi + f_ (51)

with

ui = fti + u_



then the Reynolds averaged vorticity transport equation can be written:
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Ozj (ujf_i) (52)

i.e.

Here, we restrict attention to mean flows which are steady and parallel in the z-direction,

tb = tb(y) so that

ti = a(x, y, t) (53)

and

o=_,(x,y,t)

These are essentially two-dimensional flows, but permit the existence of two mean vorticity

components. That is,

du3
fil - - ill(y)

dy

and

_t3 = ((x,y,t), (54)

with

Consequently, the governing equation on ( becomes:

o: o,¢, o _ _ _ o(_)+_t- )+_(_) : ¼_;¢-_.,.;
0 0

! !

where the uif_i terms are the terms which must be modelled.

(55)
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We have already stated that atmospheric turbulence has not been coupled with vortex-

generated turbulence in this study. Essentially, it is assumed that the aircraft vorticity field

In that context, we havebehaves like a passive scalar, immersed in atmospheric turbulence.

assumed that

Q'iU_ -- -clqA-_x j

where q2 is the local turbulent kinetic energy,

q2 1 i i
-_Uk U k

(56)

(57)

while A is a turbulent length scale and ¢1 is the turbulence modelling constant. It is assumed

that q and A are not altered by vortex interactions.

In order to utilize Eqn. (56), it is necessary to model q and A. Bilanin, Teske and Hirsh

(1978) have employed a second order closure model, using similar nomenclature, to study vortex

wake decay. When the wake vortex velocity field did not contribute to the turbulence, it was

possible to show that q was constant both near the ground plane and in the far field. In addition,

the von Karman constant, _, can be used to model the characteristic turbulent length scale near

the ground as

A _ xy. (58)

Since A should be constant away from the ground, it was necessary to model the intermediate

zone. Here, we have assumed that

A _ c2(1.- e -xy/c2) (59)

which matches Eqn. (58) for small y. von Karman's constant has been taken as 0.4 in this

study, leaving c2 as the remaining arbitrary constant.



Employing Eqn. (56) in Eqn. (55) yields:

0-7 + )
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+qqN \
(60)

where A is given by Eqns. (58) and (60) and cl, c2 and q are evaluated using experimental data.

Results

Based upon previous numerical studies, it was determined that the vortex core centers could

be placed at x0 = 1, y0 = 2 (and z0 = - 1, y0 = 2, from symmetry) to start the simulations. That

vertical distance (y0 = 2) was deemed close enough to the ground plane to produce detectable

coupling effects after moderate time intervals after start-up, but it was also far enough from

the ground plane to enable the vortex flow field to establish itself prior to strong ground-plane

interactions. The initial vortex core was assumed to have a core radius, rc, of 0.2 and a 150 x 300

grid was employed in the numerical simulations reported herein. Calculations were performed

using a Cray II computer at NASA Langley Research Center.

Limited experimental data were available for numerical validation studies. Only the experi-

ments of Liu and Srnsky (1990) were used. Their vortex flows were produced using an NACA

0012 wing model and the estimated circulation based Reynolds number (I'0/_,) was 7,650. Their

experiments did not investigate stratification effects near a ground plane.

For the unstratified, validation studies, circulation Reynolds numbers of 1000, 7,650 and

75,000 were simulated. Figure 2(a) represents the trajectories (z(t), y(t)) followed by the

three simulated vortices, along with the measured trajectory of Liu and Srnsky (1990). The time

histories of x(t) and y(t) for the four vortex cases are shown in Figures 2(b) and (c), respectively.

The agreement between the numerical simulation and the experiment is quite good.
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In order to assessthe influenceof Reynoldsnumber,stratification and turbulenceon the

vortexhazard,somemeasureof hazardstrengthwasrequired.However,sincethecomputational

domain is an unboundedquadrant,overall or global measuresof circulation or velocity levels

appearedto beof little value. It wasfinally decidedthatcirculationandkinetic energyhistoriesin

the aircraft approachzonewould bemeaningful.The zonewasselectedsomewhatarbitrarily to

betheareaboundedby -2 < z < 2 and 0 < y < 3, which would span a typical runway entrance.

The velocity components and vorticity were computed at each grid point within the right half

of that area(0 < z < 2,0 < y < 3) at each time level. Subsequently, zonal circulation, F(2x3),

was calculated by integrating the vorticity over the half area and the instantaneous kinetic energy

within the zone, E(2x 3), was computed by a similar integration of _ Those histories are
2 "

shown in Figure 3 for the extreme Reynolds number cases(1000 and 75,000). The experiments

of Liu and Srnsky did not report circulation and energy history data of this type.

Data were not available for comparison between simulated vortex flows in a stably stratified

ambient environment with ground effect. Stratification effects were tested for a circulation-based

Reynolds number of 1000, at dimensionless Brunt-V_iis_i frequencies (n/Fv) of N = 0.05 and N

= 0.1. The predicted results for this laminar flow case are displayed in Figure 4, along with the

unstratified case (N = 0), for comparison. The trajectories, lateral and vertical position histories,

along with circulation strength F(2x3) and kinetic energy E(2x3) histories are displayed in

Figures 4(a) through (e), respectively.

The background turbulence model, discussed in the previous section, was incorporated in the

simulations for a circulation-based Reynolds number of 75,000. A global turbulence constant,

C, defined by

C _ Cl c2q
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is all that is required to model this eddy-viscosity type turbulence (since c2 was chosen as 0.5)

and values of C = 0.001 and 0.1 were employed in the simulations. The combined effects of

Reynolds number, turbulence and ground effect on vortex motion and strength are shown in

Figures 5.

Discussion

While the laminar flow simulations (Re = 1000) are less realistic, in terms of aircraft vortices,

they are less ambiguous, in terms of effects of turbulence models and numerical uncertainties.

Consequently, vortex rebound and stratification effects, derived from fundamental phenomena,

can be discussed with more certainty for those flow cases. To that end, stratification effects

in the vicinity of the ground plane have altered vortex trajectories rather remarkably, as shown

in Figure 4.

Referring to Figure 4, it can be seen that the vortex appears to literally try to "fall back

down hill" in both stratified cases, even though the initial descent and rebound trajectories nearly

coincide with the unstratified case. The mechanism which is responsible for that effect can best

be explained by comparing the computational flow visualization results from the unstratified

case (N = 0) with the stratified case (N = 0.1).

Figures 6 and 7 are color panels comparing the vorticity distributions at four time levels

for an unstratified flow (Figure 6) and a stratified flow (Figure 7). Streamfunction contours are

compared in Figures 8 and 9.

The stratification effect on vortex trajectory is most easily understood by looking at the

density distribution. Figure 10, shows density departure contours (from Eqn. 41, via pt, given

in Eqn. 43) at four different times. There, it can be seen that relatively higher density fluid

is pulled from the ground plane around the primary vortex, where it tends simultaneously to

compress the vortex and cause more rapid vortex deceleration due to increased inertia. While
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the vortex doesn't actually roll back toward the ground by reversingitself like a wheel, the

densitydistributionsshowthatthe bodyforcesactuallypushtheprimary vortex backtowardthe

groundplaneandthe lateraldensityvariationsevenpushthevortex towardthe symmetryplane.

Clearly, density stratificationcan confinethendestroytrailing line vorticesmuchmore rapidly

thanany other processconsideredin this study.

Conclusions

This study has shown that trailing line vortex flows can be resolved in the vicinity of a

ground plane. Vortex trajectory comparisons with the experimental measurements of Liu and

Srnsky are in quite good agreement. The preliminary inclusion of modelled turbulence effects

has not produced any startling results. On the other hand, density stratification can have a very

pronounced effect on vortex trajectories. At the admittedly high stratification levels considered

here, we have shown that vortex hazard alleviation could be facilitated by density stratification

effects within the immediate vicinity of airport runways.
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Asymptotic expansions, in terms of e = V/-i-]Re, were used in both the outer flow and

the inner flow. The two-dimensional, unsteady incompressible, Navier-Stokes equations were

used as the governing equations in both regions. Employing van Dyke (1976) type matching

procedures, the streamfunction and velocity, as well as pressure, were matched asymptotically.

Analytic solutions were obtained when the inner solution was expanded further in time.

In the following development, a two-term expansion is represented for this application.

First, the expansion for streamfunction and velocity are presented. Then matching conditions

are obtained by switching outer and inner variables according to van Dyke's (1976) procedure.

Since pressure can be derived if the velocity field is known in an incompressible flow, pressure

matching is accomplished through the governing equations and will be developed after the

governing equations in both regions are discussed. Finally, a closed form solution for the two-

term expansions is developed.

Expansions and Matching for Streamfunction and Velocity

The appropriate streamfunction for the outer flow can be written

ffJ -- _o(X,y,t) -Jr- £kI/l(X, y, t) "_ O[£2], (A.I)

where

o[d]
Oy Oy + + (A.2)

and

V - 0_ 0_o 0qq
Ox - Ox e -'_--x + O[e2] (A.3)

Similarly, the inner flow is represented as

_l, = 2C[¢o(X,r],t) + e¢l(X, r/, t)] + O[e 3] (A.4)
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where

Here, the inner velocity componentsare

0_o + 0z¢,1 (A.5)
- +

and

Or) _ _2e (O_o O_bl) O[e3 ] (A.6)v- o_ k-b-2+ _--52.+

Matching Conditions

Following van Dyke's (1976) matching theorem, we rewrite the outer expansion in inner

variable r/, while the inner expansion is rewritten in outer variable y. We then rewrite both the

streamfunction and the velocity and match the corresponding terms. It is shown subsequently

that using this matching procedure allows the streamfunction and velocity to be matched

simultaneously.

Rewriting the outer expansion in inner variables and expanding in terms of e, we have

= '_o(X,2e,7, t) + _'h(x,2_,7,t) + O[_ _]

(A.7)

_ _o(.,0,t)+ _ [2_u°(z,0,t)+ _l(z,0,t)] + O[__]

_yo r o_,_o o,i,,(=, ] o[d] (A.8)V ,_ (=,O,t)+ _[2,_--_ (x,0,t)+ W o,0 +

O_°(z ' [ O2t_° O_l(x,O,t)] +O[e_] (A.9)V _ ---_--, o,t) -_ 2,7o--2Ny(x,o,t) +



Rewriting the inner expansion in outer variables and expanding in terms of _,

2,_,o(_,_,t)+ 0[,2]
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(A.10)

(A.11)

_2 °eo(
v_ Ox x,_c,t)+O[e 2] (A.12)

From Eqns, (A.10), (A.11) and (A.12), one can see that in the boundary layer the stream-

function and y-component of velocity is one order lower in e than the x-component of velocity.

Now we match streamfunction, x-component of velocity and y-component velocity, respec-

tively, but to different order. We obtain

O[_°]:

qlo(Z, 0, t) = 0 (A.13)

0% O_o(z '
---_y (z, 0, t) = -_ _c,t)=Uo (A.14)

Oqt°(x,O,t) = 0 (A.15)
05

O[£1] :

2 0_o x, ]
r/--_--y ( o,t) + ,,x,_(x,O,t),¢j

:_o - Oqil (x '-b--y(_,o,t)+ _ o,t)],,__

=2¢o(_,_,t) (A.16)

(A.17)
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02fig

- _ = t) (A.18)

As expected, Eqns. (A.13)-(A.18) either give the bottom boundary condition for the outer

flow or the top boundary condition of the inner-flow. Equations (A. 13) and (A. 15) are equivalent

and they just give one boundary condition for _o which is obviously the slip-free boundary

condition. Equation (A. 14) is the top boundary condition for _.,,, which must match (at the edge)

the x-component of velocity, Uo. Equations (A.16) and (A.18) are also equivalent and they

provide a boundary condition for tI/1 , while Eqn. (A.17) is a boundary condition for _1. The

equivalence between Eqns. (A.13) and (A.15), (A.16) and (A.18) shows that the streamfunction

and velocity matching can be achieved simultaneously without contradiction in this procedure.

The physical boundary conditions are thus retained by the mathematical manipulation.

From the matching procedure, the solution for the two series can proceed sequentially; first

the outer solution _o, then the inner solution _'o can be developed; followed by solution of

41, and so on.

Governing Equations

As stated previously, the governing equations used are the two-dimensional unsteady, incom-

pressible Navier-Stokes equations. Since continuity is implied by introducing the streamfunction,

we will concentrate on the momentum equations.

Outer Flow

Because viscous terms do not have any direct effect until terms of order e2 are important, it

is not necessary to include viscous effects for the two-term outer solution. Thus, we have

OU uOU vOU OP (A.19)
o--7+ + = -o--7
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av uav ray ae
+ 0x + 0y = -_9 (A.20)

In addition, if we assume the flow is irrotational -- especially near the edge of the boundary

layer -- the potential flow relation

V2_ = 0 (A.21)

can be used instead of Eqns. (A.19) and (A.20). That has been done here and the Euler equations

have been used only to determine the pressure field.

For different orders of e, we get

O[e°] : V2_o = 0 (A.22)

O[e I] : V2*, = 0 (A.23)

Since the outer solution here is only used for the purpose of generating the boundary-layer

solution, the potential solution may or may not be applied to the whole outer flow field.

Inner Flow

The dimensionless component of the boundary layer momentum equation can be written

Ou Ou c3u dp

o-i+ _ + _ = -d--; +
1 02u

Re Oy 2
(A.24)

when we have already assumed _-_ and aP-bg can be neglected because both terms do not appear

in the first two terms of the solution. From Eqns. (A.4) and (A.5), we get

at - o,70t 2t 0o2 2-7o--_-+ o,Tat 2t _ ] + O[e2] (A.25)
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and

If we let

Otl [ [02V)o Oq2_l]
O-"-'ff= 2---_[-"_'02+ --_'0_ ] + O[e] (A.26)

Oy---_ = _ L--_3 + --ff_-@] + O[e°] (A.27)

(A.28)

these expressions (Eqns. A.25-A.28) along with Eqn. (A.6) can be substituted into Eqn. (A.24),

to obtain the equations for different orders of e:

O[e°] :

02¢0 rl 02¢0 0¢o02¢o 02¢o0¢o
OrlOt 2t 071z + OrI OrlOz 07?20x

dpo 1 03tbo
- +

dx 4t Orl3

(A.29)

The three boundary conditions are the non-slip boundary condition and matching conditions:

(from Eqn. A. 14):

¢o(x,O,t) = 0 (A.30)

0¢o
_(z,O,t) =0 (A.31)
077

O¢°(x, OO°(x,O,t)=Uo (A.32)

1 0'1

2t Or/

021_1 7"] 02¢1 0@o 02_31

OqOt 2t Orl2 OrI OrlOx

0¢1 0_o 0% 02¢1 0¢102fo
+ (A.33)

071 OrlOz Ox Or12 Ox 0712

@1 1 03¢1
- +

dx 4t Orl3
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The three boundary conditions

Eqn. (A.17):

for _'1 are no-slip

¢l(x,0, t) = 0

conditions and matching condition

(A.34)

0¢1
--(x,O,t)=o
O77

(A.35)

C93-1( x, 7"1,t) I =
Or] ,7-._

+ O_x z, 0,
--5-_-y( t)] ,,__ (A.36)

From Eqn. (A.22), we have

02 gto .
02*° (x, o, t) + o, t) o
Oz2 --_y2 (x, =

while Eqn. (A.13) yields _o(x,O,t) = O.

Hence

O2%(x,o,t ) = 02%(z,o, t)
Oz2 0x2

Therefore, Eqn. (A.36) can be rewritten:

= 0 (A.37)

0¢1 (x, t) = 0_1 (x, 0, t) = U1 (A.38)o--T

Pressure Gradient Matching

As mentioned earlier, to second order we have op = 0 in the boundary layer for theN-

asymptotic expansions developed here. Consequently, we have

OP

Ox
= dp (A.39)

V= 0 dx
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From the governing equation for the outer flow (Eqn. A.19), we have

Since from Eqn. (A.2)

OU _=0.0U y=0 =OPlff_-z[+U-_z (A.40)
0t y=0

OU 02_o 02_1 10*

Ot - OyOt + e O--_ + -_e--_y , (A.41)

we obtain

O[_°]:

OoU° + Uo (A.42)
OUo dpo

_- dz

0_1 1U1 °qU1 U10Uo dpl-- + +u°--fiT+ G - dx (A.43)

Solution for Inner Flow

From Nam (1990), it is known that in an unsteady boundary layer, a two-series expansion

is needed, in terms of e and t. In the following, we write each inner solution in different orders

of e as a power series in terms of t. Since we just use the solution as the initial condition in

this problem, we can choose small t and then only the first several terms are needed. A closed

form solution is thus obtained for the first two terms of the expansions.

O[e°] :

Let

(310

= t)
p=0

(A.44)



Then the first two terms are:
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/ouo ouo \
_o = Uofol + t t'-_fl 1 + 0

Substituting Eqn. (A.45) into Eqn. (A.29), with boundary conditions,

(A.32) and employing the pressure gradient Eqn. (A.42), we obtain, for different orders of t:

o[to]•

f oIll 9 tit
+ -_Jo_ = 0, (A.46)

(A.45)

Eqns. (A.30), (A.31),

subject to:

f01(0) = f01(0) --0 (A.47)

f_l(cx_) = 1 (A.48)

o[tl]:

subject to:

f11ll It I I

1 + 2r/fll - 4f{1 = --4 + 4f61

fll(O) = f_l(O) = 0

(A.49)

(A.50)

and

subject to:

f_l(cx_) = 0 (A.51)

flit tI I

12 + 2rlfl2 - 4f12 = -4 + 4(f;i) 2 - 4foif;1 (A.52)

f;2(0) = f_2(0) = 0 (A.53)
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fh(o_) = 0 (A.54)

The solutions for f01, f:l and f12 are given in the text as Eqns. (11)-(13).

Let

Then the first two terms

p-----O

(A.55)

log: _1 OVo "_
_21 : Uagol -[- t _k---_--gll q-- Go g12 + U,-ff-x-x g,3 ) + O[t 2] (A.56)

are gotten by substituting Eqn. (A.56) into Eqn. (A.33), with boundary conditions Eqns. (A.34),

(A.35) and (A.36) and pressure gradient condition Eqn. (A.43). We obtain for different orders

of t

O[t°] :

III II I
go1 + 2rlgol - 29Ol = --2 (A.57)

go_(O)= gh(o) = o (A.58)

subject to

I
901(cc) = 1 (A.59)

subject to:

III II I I

gll + 277 g:l - 6911 = -4 + 4go: (A.60)

gll(0) '= g::(0) = 0 (A.61)
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and

subject to:

I
9_(c¢) = o

III II l I I
g12 + 2rl912 - 6g12 = -4 + 4f_)lgol

t9_2(o) = 912(o) = 0

(A.62)

(A.63)

(A.64)

and

subject to:

912(oo)=o

Ill I I I II
913 + 277 913 -- 6913 = --4 + 4f_19Ol -- 4fo19ol

913(0) '= g13(0) = 0

(A.65)

(A.66)

ah(oo) =o (A.67)

The solutions for g01, gll, g12 and 913 are given in the text as Eqns. (14)-(17).
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Appendix B. Derivation of Fluctuation Density Equation through Conservation of Mass

In incompressible flow, the local density is a function of temperature and here it is assumed

linearly related to tempe'-_ture via

p = poll -a(T- To)] (B.1)

where a is the volumetric coefficient of thermal expansion and a < < 1.

We define dimensionless density and temperature as

- (p - po)/po (B.2)

0 = (T- To)/To (B.3)

respectively.

For the case of a linearly stratified ambient fluid, the quiescent ambient state,/_, is assumed

given by

= _y (B.4)

Hence, the ambient density departure is

= -<_(i_- To) = -o_yTo (B.5)

and

d)
-- = -,_flTo
dy

(B.6)

Now, with the density fluctuation and temperature fluctuation defined as

I
p _-_ _ p (B.7)
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we have

0' - 0 - 0 (B.8)

p' = -aToO' (B.9)

From the continuity equation for compressible flow

Op Op Op

o--7+ _ + v_ + p#. a = 0, 03.m)

we obtain the dimensionless equation

o_ o_ o_
O--t + u 0--_x+ v _--_y+ (1 + fS)#. ff = 0 (B.11)

Substituting Eqn. 03.7) into Eqn. (B.11), we get

_gp' uOp ' v Op' + v + V. ff + (p + p')_. ff = 0 (B.12)
o--?+ -6-; + oy

From Eqns. (B.6) and (B.9), one can see that

d___~ O[a]
dy

p'~ 0[_]

Hence, for terms of O[a°], Eqn. (B.12) gives

_. t7 = 0 03.13)

which recovers incompressibility.

Then for O[a], Eqn. 03.12) gives

c9Pl OPt v Op'
a--"_+ u-_z + _y = -v__ (B.14)

which is the same as Eqn. (47) in the text, which was derived from the conservation of energy

equation.



2_0

,:,!

i oib

......... i ......... i ......... n,,, ...... i ......... ,

(o)

o.LI

i m

Q.OD

e_

ca

Cb)

o e e 4 o Ldru'e eand

a.._o

_S "*'°°"_'* _" °'_ °

•//i

i oJ

/ If °

=_o ,o.= ._o "'._'-
Co)

Figure 2. Comparison between computed and meassured (a) vortex trajectories, (b) lateral vortex

position histories, (c) vortex elevation histories, at various Reynolds numbers



4._4 "-----'-- h- _J,000
.... II_l.000

II

044 I

0,10

-11.10 •

....... --i, . ,, ............ r ,

(a)

0.,_

Figure 3. Predicted vai_ltion o4'(a) circulation r(2x3), (b) kinetic energy £(2x3), with time forvarious Reynolds numbers



2...s

ZJm

0.50

O.O0

0.00

I

/

!

9-

(o)

2.60 -

3_

l.lO

1.20

O.M

)i,,,0,06
pO4m4}.I

/

• , ..... o,
/ o,'° "°-,

I ,'"

Y

.\

.,,,, .... v, ......... v,,,,.,,,, j,,,,,,,v,!
M w.m m._ I.N

(c)

o3m

o.I

Lie

Q._s

(,)

1.,00

3.,M

z.oO

__ q_O6
ma4LI

|,,J_

n.OO

O,J ¸

O,,daO

¢LO0

•:.:..'...-.S.---.'.--
,,, oO-

i.,

Y

(b)

el.a,

.4,41

_ I¢-=Ii.I

U M

(e)

Figure 4. Influence of stratification on predicted

(a) vortex trajectories, (b) lateral vortex position
histories, (c) elevation histories, (d) circulation

['(2x3), (e) kinetic energy E(2x3), Re=l,04)0



_ ¢,.411 ..... C_l

° t

,::S/
JiJ oo" r

,° •

,., ,,,,,, f,,,,,,,,,i, ,T,,,,,,T,I,,1,,,, r, ,,, ,,,,, I
O.m I.R _ .t.O0 *.m SaW

(a)

_:.-.-__-.
• o°-"

so°,

• ,"

-

Cu)

¢,,4.08!

1Ji _ ¢.aOJb t

_** 1 f#-3"" "

I.m _1 '

(c)

-_ ¢-4
¢..(LD!

%%

O.OO ]O.OI _ iO.OD m Og

(d)

ILM

• Q.Mb

O-,IO

OuO

i

(,)

Figure S. Influence of turbulence on predicted

(a) vortex trajectories, (b) lateral vortex position

histories, (c) elevation histories, (d) circulation

F(2×3), (e) kinetic energy E(2x3), Re=75,000



ORI_)NAL P.:k3E IS
OF POOR QUALITY



f

A,,..

C

L,.

i

-'r

n

1-

t

ir

m

OP!"';!Nh;_ F..k._F.. iS
OF '_ '.)OR "' _L!T



OF POOR QUALITY





"-"_'_'_'_""_-._.'_C_EIS

OF FO0_'( QUALITY


